導讀:在用戶運營領域,有一個叫做RFM的詞,相信很多人看到過,或許感覺比較專業就沒有繼續深入;或者有些文章涉及到了python等數據處理手段,望而卻步;又或者因為這個詞跟電商關系緊密,所以
發表日期:2020-01-05
文章編輯:興田科技
瀏覽次數:6676
標簽:
在用戶運營領域,有一個叫做RFM的詞,相信很多人看到過,或許感覺比較專業就沒有繼續深入;或者有些文章涉及到了python等數據處理手段,望而卻步;又或者因為這個詞跟電商關系緊密,所以非電商的運營伙伴就選擇了放棄學習。
今天主要是分享一下RFM模型在用戶分層精細化運營領域的應用方法和簡單的實操案例。RFM模型更上一級隸屬于用戶價值模型,在用戶價值模型中有兩個方向:
一個是基于用戶生命周期,也就是時間和用戶在產品內的成長路徑進行的生命周期模型的搭建
另一個就是基于用戶關鍵行為進行的RFM模型的搭建,本次只說用戶價值模型中的RFM模型
RFM模型有哪些好處呢?當我們確定了RFM模型之后,從而可以決定針對哪些用戶在發送短信時,加上前綴“尊敬的VIp用戶”,哪些用戶加上前綴“好久不見”。也可以幫助企業判斷哪些用戶有異動,是否有流失的預兆,從而增加相應的運營動作。用處之大,且看下文。
關于RFM的科普大家可以自行在網絡上搜索,這里不做贅述,先說一下三個字母的意思:
R:最近一次消費(recency),代表用戶距離當前最后一次消費的時間,當然是最近一次消費的時間距今越短越好,對我們來說更有價值,更可能有效的去觸達他們。
F:消費頻次(frequency),用戶在一段時間內,在產品內的消費頻次,重點是我們對一段時間的定義。
M:消費金額(monetary),代表用戶的價值貢獻。
最早是將R、F、M每個方向定義5個檔,5*5*5=125種用戶分類,對大部分運營和產品來說,過于復雜,大家可以不用去了解為何分成5檔這樣的歷史問題?,F在我們已經把R、F、M每個方向定義為:高、低,兩個方向,我們找出R、F、M的中值,R=最近一次消費,高于中值就是高,低于中值就是低,這樣就是2*2*2=8種用戶分類,如下圖:
所以,如果我們能夠找出產品內用戶隸屬于以上8類中的哪一類,我們就可以針對性的制定運營策略。
在做具體的RFM搭建之前,我再強調一次,RFM模型不僅適用于電商領域,其他領域同樣適用。只要我們找出跟R、F、M相關的數據字段,做好字段的定義,證明這些字段是影響當前業務進展的最為關鍵的幾個維度即可:
R:最近一次登錄時間、最近一次發帖時間、最近一次投資時間、最近一次觀看時間
F:瀏覽次數、發帖次數、評論次數
M:充值金額、打賞金額、評論數、點贊數
上面這些都是在其它領域對R、F、M的定義,具體要根據實際業務情況進行評估。比如你是豆瓣的運營負責人,發現過去一周,豆瓣圖書版塊的整體流量下降10%,同時,文學書籍類別下的分享帖環比下降5%,你要去分析原因,可以選取對應R、F、M的字段分別為:登錄數、發帖數、互動數。
圖書版塊整體流量下降,可以理解為這個版塊的活躍下降,可以看下過去一周的登錄數。
文學書籍類別下的分享帖下降5%,可以看下過去一周的發帖數。
同時,流量下降,我們可以看下是否因為帖子質量相對下降,導致用戶的互動(評論、收藏等)下降,進而導致流量下降。
下面我以自己抓取的1w條某導購平臺的一套數據為例,帶大家使用最簡單的方法,進行這套數據中用戶RFM模型的搭建,找出這8個類別的用戶。
RFM模型搭建步驟如下:
1、抓取R、F、M三個維度下的原始數據,我抓取是最近一次消費時間、消費頻次、消費金額。上文已經說過,在做各自業務分析時,可以根據實際情況選取R、F、M的數據字段。下表是1w條數據中的13條進行展示:
2、我將1w條數據的最近一次消費時間、消費頻次、消費金額分別用占比趨勢圖進行處理,以消費頻次為例,如下圖:
大家通過圖表,可以看出1w條數據中,關于消費頻次出現了幾個比較明顯的斷檔,分別是:消費1次、消費2-5次、消費6-11次、消費12-17次、消費18次以上。所以,我把F值分為5檔,F=1=消費1次,F=2=消費2-5次,F=3=消費6-11次,F=4=12-17次,F=5=18次以上。
同理,用上圖的方式,我找出了R值和M值5檔分別對應的數據區間。R=1=2天,R=2=3-8天,R=3=9-14天,R=4=15-22天,R=5=23天以上;M=1=600元,M=2=601-3800元,M=3=3801-6200元,M=4=6201-10000元,M=5=10001-15000元。
我們得到RFM三個數據指標下的分檔標準:
(R值是反向值,R值越大,用戶價值越低;F值是正向值,F越大用戶價值越高;M值是正向值,M值越大用戶價值越大。)
3、計算1w條數據,每條數據下最近一次消費時間、消費頻次、消費金額對應的R、F、M值:
上圖的計算方式比較簡單,我們在excel中寫入if語句:
單元格E2=if(B2>23,5,if(B2>15,4,if(B2>9,3,if(B2>3,2)))))
解釋:
如果B2大于23,則A1用戶對應的R值=5,否則進入下一個if判斷;
如果B2大于15,則A1用戶對應的R值=4,否則進入下一個if判斷;
如果B2大于9,則A1用戶對應的R值=3,否則進入下一個if判斷;
如果B2大于3,則A1用戶對應的R值=2,否則進入下一個if盤點。
計算F值和M值的方式一樣。
4、計算R、F、M的平均值,這一點大家應該都會,直接求和再除以項數。R(ave)=2.9,F(ave)=1.8,M(ave)=2.7
5、將1w條數據每個用戶的R值、F值、M值和平均值進行比較,高于平均值則標記為高,低于平均值則標記為低:
比較高低值,使用一個簡單的if語句:
H2=if(E2<2.9,“低”,“高”),F值和M值計算同理。
6、將每個用戶的R、F、M值與中值分別進行比較,得出用戶所屬類別表:
每個用戶的R值、F值、M值與中值進行比較,判斷高或者低,進而確定用戶屬于上文所說RFM模型8類用戶中的哪一類,這里需要用到一個簡單的if語句進行判斷,我們以A1用戶為例,判斷A1用戶所屬用戶類別:
K2=IF(AND(H2=”高”,I2=”高”,J2=”高”),”重要價值用戶”, IF(AND(H2=”高”,I2=”低”,J2=”高”),”重要發展用戶”,IF(AND(H2=”低”,I2=”高”,J2=”高”),”重要保持用戶”, IF(AND(H2=”低”,I2=”低”,J2=”高”),”重要挽留用戶”,IF(AND(H2=”高”,I2=”高”,J2=”低”),”一般價值用戶”, IF(AND(H2=”高”,I2=”低”,J2=”低”),”一般發展用戶”,IF(AND(H2=”低”,I2=”高”,J2=”低”),”一般保持用戶”,”一般挽留用戶”)))))))
同時,我們點擊excel中的“條件格式”,將文本中帶有“高”字的設置一個綠色,帶有“低”字的設置一個“紅色”,更方便我們識別。
至此,我們得到了這1w條數據下用戶的完整精細化分層,接下來,大家可以根據分層結果做相應的運營策略具體開展執行工作。
7、根據用戶分層結果制定運營策略
制定運營策略既要結合各類用戶在產品中的占比,也要結合產品的實際業務邏輯。以此次某導購平臺用戶分層為例,制定如下策略:
有些小伙伴在制定策略時,直接甩上來一堆不能稱之為策略的“方案”,比如針對“重要發展用戶”,我給出的策略是“提升頻次”,所有圍繞提升頻次的手段都可以去嘗試,而不是上來就制定比如:發push、發券、打電話等方案,這些都是在策略支撐下的運營手段。策略本身一定是可以延伸和復制的。
除了上述根據用戶類別進行運營策略制定,我們還可以分析1w條數據中,R值分布、F值分布、M值分布,基于三個數值的分布以及和中值的比較,針對最近一次消費時間、消費頻次、消費金額維度下做整體的運營,提升站內用戶整體活躍、整體流程、拉動GMV等。
整體來說,RFM模型不是很難,但是有一些需要注意的點:
1、在抓取原始數據時,一定要結合實際業務來選取關鍵數據指標進行分析,而不是千篇一律的最近一次消費時間、消費頻次、消費金額。上文也給過豆瓣的案例,在豆瓣案例中,R=登錄數、F=發帖數、M=互動數。
2、在定義R值、F值、M值的評估模型進行數據區間分隔時,也不是千篇一律的用本文說述的看整體趨勢,從而發現明顯斷檔的形式進行,也可以用散點圖、透視表、占比圖等進行判斷。同時,除了通過數據去發現斷檔,我們可以基于自己的業務和業內的平均水平進行臨界點的發現。比如針對滴滴、易道這樣的打車軟件,使用頻次相對較高的肯定是工作日。所以,如果分析滴滴的業務,F值消費頻次的5個分檔可以基于實際業務,以每5天作為一檔,分析近30天內的業務表現。比如F=1=5天以內,F=2=6-10天,F=3=11-15天,F=4=16-20天,F=5=21-30天。然后將提取的每個用戶的消費頻次和這5個檔進行比較,確定每個用戶的F值
3、對于中值的計算,最簡單的是本文所說的平均值計算方式。除了平均值,還有二八法則,20%的用戶創造了80%的收益,所以,可以將這個臨界點作為每個用戶R、F、M比較的對象。對于更加復雜的業務,可以尋求程序員協助,使用Means聚類算法進行精準取數。
4、除了本文所說選取3個核心業務指標進行交叉分析,有些時候,我們可能需要同時分析4個、5個指標,或者只需要分析2個指標。所以,不需要很死板的使用本文的計算方法,要靈活變通,這里不再舉例。
5、最終還是要回歸到運營上來,所以,針對不同分層用戶的運營策略的制定要結合實際,在制定了運營策略之后,結合公司現有資源和手段開展具體的落地工作。
對于本文的內容,建議大家實操嘗試。
上一篇:
網頁制作中,如何設計好用的觸控手勢更多新聞
2020
關于網站建設,科技是第一生產力,信息時代是技術的時代。誰主導了技術,誰就主導著未來社會的發展。到這里,應該說這些結論都有道理。但由于信息技術的代表
View details
2020
關于網站建設,企業網站的作用更類似于企業在報紙和電視上所做的宣傳企業本身及品牌的廣告。不同之處在于企業網站容量更大,企業可以把任何想讓客戶及公
View details
2020
關于網站建設,下面小編告訴大家怎樣來提高網站建設的權重? 1標題:確保網站每一個標題的唯一性也是網站優化者必須注重的,只有唯一性才能給你的網站帶來
View details
2020
在用戶運營領域,有一個叫做RFM的詞,相信很多人看到過,或許感覺比較專業就沒有繼續深入;或者有些文章涉及到了python等數據處理手段,望而卻步;又或者因為這個詞跟電商關系緊密,所以
View details